Yearly Demand for Whole Human Genome Sequencing – 400K New Genomes in 2015 ?

hgp_measures

(Figure courtesy of the National Human Genome Research Institute: http://www.genome.gov/27553526) 

Advances since the Human Genome Project ended in 2003 have been significant. With new Illumina sequencing instruments becoming operational in April, large facilities will be able to generate 18,000 whole human genomes (18,000 30x Genomes / HiSeq X Ten, a set of 10 HiSeq X Systems). As of today, these facilities include: the Broad Institute, Garvan Research Foundation, Macrogen, New York Genome Center, Novogene and WuXi PharmTech. At a rate of 1 genome / lane, this begs the question how many 30x human genomes will be sequenced in the next 3 years ? Let’s estimate that each facility will churn out around 25,000, 30x genomes/year (some of the facilities above have purchased multiple HiSeq X Tens, others have more than 10 daisy chained together). In 2015 yield from these facilities alone (assuming no one else purchased a machine) would be ~150,000 genomes. Optimistically doubling that to account for new HiSeq X Ten purchases between now and 2015 would give an estimate of ~300,000 genomes in 2015, and that’s only on the HiSeq X Ten. Assuming this year there will already be 60,000 30x (non-HiSeq X Ten) genomes sequenced, 20% growth brings this figure closer to ~400,000 genomes in 2015. While this figure certainly does not account for delays, instrument break downs, data analysis, storage and library prep bottlenecks, it represents optimistic potential for 2015.

The next question is who’s going to supply all the DNA ? Several new initiatives to sequence whole populations are quickly popping up. With £100m earmarked, the UK is planning on sequencing the genomes of up to 100,000 NHS patients by 2017 (instrument platform likely Illumina), Saudi Arabia also plans to map 100,000 of their citizens, with the Ion Proton in line ready to do all the heavy lifting: http://www.bbc.com/news/health-25216135. Craig Venter’s recent launch of the company Human Longevity plans to start sequencing 40,000 genomes with plans to “rapidly scale to 100,000 human genomes / year”: http://www.humanlongevity.com/human-longevity-inc-hli-launched-to-promote-healthy-aging-using-advances-in-genomics-and-stem-cell-therapies/.

Everything described above pertains to whole human genome sequencing and is not meant to undercut the significantly higher number of other species that will be sequenced between now and 2015. Our focus at Genohub is to make it easy for researchers interested in next generation sequencing services to access all the latest sequencing technology, including the HiSeq X Ten: https://genohub.com/shop-by-next-gen-sequencing-technology/#query=e304abac02105b87079fd1a19e70b9ed. Anyone can search for, find and order sequencing, library prep and analysis services, making owning an actual sequencing instrument not a requirement for getting access to good quality data.

 

 

The “$1K”, 30X Whole Human Genome is now available for $1,400

HiSeq X Ten Sequencing Services now Available on Genohub

You can now order whole human genome sequencing (~30x coverage) on Genohub.com for $1,400 / sample ($1,550 with library prep). The Kinghorn Centre for Clinical Genomics is accepting orders for their HiSeq X Ten service through Genohub.com.  In fact, you can order this service today: https://genohub.com/shop-by-next-gen-sequencing-technology/#query=5a4399a2a2cab432b240d2426c708472

Designed for population scale human genome sequencing, the HiSeq X Ten when operating individually can output between 1.6-1.8 Tb on a dual flow cell in less than 3 days (600 Gb / day). When running 10 in parallel, tens of thousands of genomes can be sequenced in a single year. While currently Illumina has limited the HiSeq X Ten to human samples, we expect this will change in 2015. 

A single lane of HiSeq X Ten, gives you 750M paired end 2x 150 reads, for a total output of 112.5 Gb / lane. Kinghorn guarantees 100 Gb raw data per lane, with >75% of bases above Q30 at 2x150bp. With a haploid human genome size of 3.2 Gb, that’s equivalent to 30-35x  per lane of sequencing.  The $10 million price tag for the HiSeq X Ten means that not all institutes have access to such sequencing power. Genohub solves this problem by making it easy for researchers interested in next generation sequencing services to access all the latest sequencing technology. We also:

  1. Ensure your project with the provider goes smoothly
  2. Take care of billing and invoicing, making domestic & international ordering a breeze
  3. Have an easy to use project management interface to keep communication and information in one place
  4. Offer NGS project design and consultation
  5. Have competitive pricing and turnaround times

Start your population study on Genohub.com today !

 

 

 

AGBT 2014 – Digest of Days 2 – 4

AGBT 2014 Summary

Days 2 – 4 of the Advances in Genome Biology and Technology meeting (AGBT) meeting were packed with great talks and insightful comments #AGBT14. For a summary of day 1 check out our earlier post. We’re just going to give a brief digest of the talks we attended and will update this blog post as we fill in more details.

Day 2 at the Advances in Genome Biology and Technology meeting (AGBT) started off with a cancellation of the much-anticipated talk by Evan Eichler on “Advances in Sequencing Technology Identify New Mutations, Genes and Pathways Related to Autism”. Dr. Eichler studies gene duplication and DNA transposition within the human genome. We’re assuming that what he was going to present was just published this month, “de novo convergence of autism genetics and molecular neuroscience”. Let us know if you know otherwise or when Dr. Eichler is speaking again!

Stephen Fodor, founder of Affymetrix announced a new approach for quantitation of mRNA transcripts in single cells. The method utilizes a single tube endpoint assay and allows for precise measurements of transcripts without the need for cycle to cycle real time measurements or physical partitioning (digital PCR). The procedure works by encoding all mRNA molecules with molecular barcodes allowing the user to amplify their samples and not worry about duplication rates. Pixel™, the name of their device is described in more detail in their white paper.

Hiroyuki Aburtani presented a lecture on applying epigenome profiling and single cell transcriptome analysis and demonstrated that Wnt / B-catenin signaling switches transcriptional networks and re-organizes the epigenome into specific pluripotent lineages. Their analysis is designed to improve the understanding of cell fate during differentiation.

David Jaffe’s much anticipated talk on the assembly of bacterial genomes using long nanopore reads generated a significant amount of interest. David presented data on two bacterial genomes, methylation negative E. coli and Scardovia. His conclusion was that the data was not useful by itself for de novo assembly, but he speculated on applications that would benefit from data where 84% of reads had at least a perfect 50-mer. This talk was nicely summarized by two other blog posts: The one and only Oxford Nanopore talk at AGBT 2014 – with real data and Oxford Nanopore Data and MinION: Valentines Day’s Gift to Genome Enthusiasts.

William McCombie’s talk demonstrated his group’s ability to generate 10 kilobase reads to assemble the Saccharoyces W303 genome using HGAP and the Celera Assembler. Their resulting contig N50 approached 1 million bases. Their hybrid assembly made it possible to generate whole genome, eukaryotic genomes that exceed BAC assemblies with Sanger sequencing.

Gene Myers discussed a new assembler called the “Dazzler” (the Dresden Azzembler) that can assemble 1-10 Gb genomes from PacBio RSII data. The advantages for the new assembler are that it can scale to Gb genomes 100 fold faster than current assemblers and it has a “scrubbing phase” that detects and corrects read artifacts that can cause problems with long contiguous assemblies. A nice summary of this talk is described in Dale Yuzuki’s blog post: http://www.yuzuki.org/favorite-talk-agbt-2014-gene-myers-max-planck-dresden/

 Hessam Esfandyarpour from Genapsys, presented on what they call a “truly cost-disruptive sequencing platform”, the GENIUS 110 System. Backed with just under $50 million in venture funds from Yuri Milner, DeChang Capital and IPV Capital, the GENIUS system uses nano-electronic technology (clonal amplification as opposed single molecule sequencing) combined with unmodified nucleotides and polymerase to generate “long reads”. They announced the Genius Club, an early access program, to test the instrument. While he did talk about consumables, three chips with 1Gb, 10Gb and 100Gb, he didn’t show much data. We’ll have to wait to hear more.

Jeffery Schloss, director of the division of Genome Sciences at the National Human Genome Research Institute gave a talk on “Ambitious Goals, Concerted Efforts, Conscientious Collaborations – 10 Years Hence”. His talk began with a graph measuring the cost per base on the y-axis and the years from 1990-2005 on the x-axis. He reiterated their strategic plan of Base pairs to Bedsides: http://www.genome.gov/Pages/About/Planning/2011NHGRIStrategicPlan.pdf. Schloss’s talk was nicely summarized in a recent Dale Yuzuki’s post.

We’re in the process of updating and adding summaries of talks from AGBT 2014. Check in again !

 

 

 

 

 

AGBT 2014 – Summary of Day 1

AGBT 2014 Summary

The first day of the Advances in Genome Biology & Technology (AGBT) meeting kicked off with an introduction by Eric Green, Director of the National Human Genome Research Institute. He announced that this 15th annual meeting was the largest ever with 850 expected to attend. The opening plenary session certainly did not look like 850 people in attendance. Winter Storm Pax wreaked havoc on flights coming in from Atlanta and other cities, resulting in several speaker and general attendee cancellations.

The plenary session began with scheduled talks by Aviv Regev, Jeanne Lawrence, Wendy Winckler and Valerie Schneider. Jeanne Lawrence couldn’t make it, which was a shame particularly since she gave a brilliant talk at ASHG on using a single gene XIST to shut down the extra copy of chromosome 21 in Down syndrome. This work was nicely summarized in a publication that came out this summer titled: Translating dosage compensation to trisomy 21.          

Aviv Regev and Wendy Winckler’s talks were subject to a blog/tweet embargo (unclear whether Regev’s talk was completely under embargo or only the last half, we’re playing it safe and not discussing it here), leaving Valerie Schneider’s presentation the only one that was tweeted or written about. This instantly created great angst among those attending the lectures, those stuck in airports enroute to AGBT and those at home waiting for in depth coverage.

Single-cell sequencing, considered the “method of the year” by Nature Methods was the basis of the opening lecture. Aviv Regev offered an excellent view of the dendritic cell network based on cyclical perturbations and variations between single cells. Regev’s first half of her presentation titled, “Harnessing Variation Between Single Cells to Decipher Intra and Intercellular Circuits in Immune Cells” was largely covered by her publication in April, “Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells”.

The second talk, by Wendy Winckler was not allowed to be discussed or tweeted according to Winckler, courtesy of Novartis’s communications department. The title of her presentation “Next Generation Diagnostics for Precision Cancer Medicine” wasn’t revealing either. To get an idea of what she’s up to and the direction of her lecture, you can read these recent publications.

The final talk by Valerie Schneider, titled “Taking advantage of GRCh38” began with an analogy to an unwanted pair of socks one receives for Christmas that ends up being used and finally really liked. “It was time for an update….whether or not it was on your wish list”. We were reminded that centromeres are important specialized chromatin structures important for cell division, but because of repetitive regions, they are not represented in reference assemblies. Previous versions of the human reference assembly had centromeres represented by a 3M gap. The latest assembly, GRCh38 incorporates centromere models generated using whole genome shotgun reads as part of the Venter sequencing project. Since there are two copies of each centromere for each autosome, these centromere models represent an average of two copies. She concluded her presentation urging users to switch now: http://www.ncbi.nlm.nih.gov/genome/tools/remap.

 After a short break from the talks, the closing reception sponsored by Roche began outside. Halfway through, there was a brief yet sudden Florida thundershower that sent the entire AGBT community scurrying indoors for shelter. That was okay though because the conversations just continued indoors. Looking forward to tomorrow morning’s lectures. Several of the ones we’ve highlighted will be up.

 

2014 AGBT Agenda Highlights

AGBT 2014 Agenda

The yearly genomics pilgrimage to Marco Island begins next Wednesday from Feb. 12th until the 15th. The 15th Advances in Genome Biology and Technology (AGBT 2014) Agenda was released last week, it’s guaranteed not to disappoint. We expect the following lectures to be the most interesting: 

Aviv Regev, Broad Institute of MIT and Harvard
“Harnessing Variation Between Single Cells to Decipher Intra and Intercellular Circuits in Immune Cells”

-Single cell genomics is becoming an extremely useful tool, we’re eager to hear more on the first day of the meeting. 

Jeanne Lawrence, University of Massachusetts Medical School
“Silencing Trisomy 21 for Genome Balance in Down Syndrome Stem Cells”

– Her talk was the most tweeted plenary lecture during ASHG 2013 and it was great! A must go!

Evan Eichler, University of Washington
“Advances in Sequencing Technology Identify New Mutations, Genes and Pathways Related to Autism”

– Dr. Eichler studies gene duplication and DNA transposition within the human genome. This is going to be a good talk.

Beth Shapiro, University of California, Santa Cruz
“Paleogenomes, Ice-age Megafauna, and Rapid Warming: How Genomes From the Past Can Help Predict the Consequences of the Future Climate Change”

 – The paleogenomics section of the recent PAG conference was excellent. I expect this to be an interesting lecture as well. 

 Andrea Kohn, University of Florida
“Single-Neuron Semiconductor RNA-seq with Nanofluidic Capture: Toward Genomic Dissection of the Complex Brains and Memory Circuits”

– Lots of good RNA-Seq talks. Dr. Kohn’s single cell sequencing approach is described here: Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging  and here: Single-cell semiconductor sequencing.

Stephen Fodor, Cellular Research, Inc.
“Digital Encoding of Cellular mRNAs Enables Precise and Absolute Gene Expression Analysis by Single-Molecule Counting”

– What’s next from the founder of Affymetrix? For a preview check out their paper that came out this month on molecular indexing for quantitative targeted RNA-Seq.

 James Hadfield, Cancer Research, UK
“Monitoring Cancer Genome Evolution with Circulating Tumour DNA Exome Sequencing”

– Looks interesting. Hoping to get a preview from his blog: CoreGenomics

Hiroyuki Aburatani, The University of Tokyo
“Single Cell RNA Sequencing Reveals Transition of Cell Populations with Epigenomic Switch in Cell Fate Determination Along Cardiomyocyte Differentiation”

Brian Haas, Broad Institute of MIT and Harvard
“Single Cell Developmental Genomics: Trinity-Enabled Single Cell Transcriptome Study Identifies New Regulators of Salamander Limb Regeneration”

 David Jaffe, Broad Institute of MIT and Harvard
“Assembly of Bacterial Genomes Using Long Nanopore Reads”

– Expecting to see some of the first Nanopore data here !

W.R. McCombie, Cold Spring Harbor Laboratory
“A Near Perfect de novo Assembly of a Eukaryotic Genome Using Sequence Reads of Greater than 10 Kilobases Generated by the Pacific Biosciences RS II”

Hesaam Esfandyarpour, Genapsys, Inc.
“The GENIUS™ Platform: A Next Generation Sequencing Platform That Exceeds Quality and Cost Goals for Universal Deployment In and Out of Core Laboratory Environments”

– The latest NGS platform, Genapsys just got $37M in series B financing

 Zak Wescoe, University of California, Santa Cruz
“Error Rates for Nanopore Discrimination Among Cytosine and Four Epigenetic Variants Along Individual DNA Strands”

Yaniv Erlich, Whitehead Institute for Biomedical Research
“Genome-Wide Analysis of Expression Short Tandem Repeats”

Carlos Bustamante, Stanford University
“Any Way You Want It: Applications of Whole Genome Capture to Ancient DNA, Metagenomics, and Orthogonal Validation”

Daniel MacArthur, Massachusetts General Hospital
“Functional Annotation at Scale:  Analysis of Genetic Variation From Over 50,000 Human Exomes”

Genohub will be in attendance and tweeting @Genohub. Send us a message and let’s meetup to talk NGS !

NextSeq 500 and HiSeq X Ten: New Tech Lowering Cost per Mbp

Jay Flatley’s announcement yesterday certainly changes calculations for whole genome sequencing. Newer, cheaper optics, fluidics and reagent chemistry have lowered the cost of sequencing and enabled a 300 cycle, 125 Gb run in 30 hours with the NextSeq 500. The HiSeq X Ten, (pronounced ex ten, not ten ten) consisting of 10 instruments daisy chained together, will generate 18 Tb in 72 hours.  The new optical technology now utilizes a 2 dye system: adenine and cytosine bases are represented by one dye, an absence of dye for guanine bases and both dyes for thymine. This allows Illumina to utilize lower resolution cameras with half the number of images. The new patterned flow cells with larger clusters use nano wells and are scanned bi-directionally making optical scanning 6 times faster than a HiSeq 2500. New reagent chemistry now allows reactions to occur at room temperature, eliminating the need for a bulky chiller which reduces the instrument’s size to that of a Miseq, leading to the commonly quoted phrase: “HiSeq in a MiSeq”.

What’s the cost ?

The NEXTSeq 500 will cost $250,000 and the HiSeq X Ten must be purchased in sets of 10 at $10 million for a full set. According to Illumina, the HiSeq X Ten will yield whole human genome sequences for $1,000 each and will have the capability to generate around 15,000-20,000 genomes per year. The NEXTSeq 500 will be able to generate 120 Gb or 4, whole human genomes at 30x coverage for ~$4,000.

Excess capacity

So what will providers be doing with all this excess capacity….enter Genohub.com.  Genohub’s intelligent sequencing matching engine instantly matches researchers with service providers based on specific project criteria. Genohub facilitates the management of sequencing projects throughout the sequencing lifecycle from selecting orderable sequencing packages, to communication, payments and delivery of data. In March, NGS service facilities are going to need to recoup operational costs and convince their institutions they made the right choice dropping $250K for a NEXTSeq 500 or $10M for a HiSeq X 10 cluster. We estimate that toward the middle of 2014 there will be a lot of available NEXTSeq 500 flow cells needing filling and a much higher number of whole human genomes needed for the HiSeq X 10. Regulatory issues, data analysis bottlenecks and operational logistics will most likely keep the 5 HiSeq X 10’s fairly quiet in 2014 (Illumina has promised 5 in 2014, 3 have already been purchased). Genohub is uniquely positioned to distribute this excess capacity to researchers around the world.  Your local institution or even country no longer need to have one of these instruments on hand (See our post on reasons to outsource NGS services). By using Genohub.com, you have access to sequencing capacity and instruments located throughout the world.

Looking to use the NEXTSeq 500 ? After discussions with our current service providers, we expect NEXTSeq 500 sequencing services to be available on Genohub in 3 months. We’ve already spoken to one of the announced HiSeq X 10 customers and hope to have that service available on Genohub shortly after delivery.  So today, we’re happy to announce that Genohub is taking NEXTSeq 500 pre-delivery service requests ! Send your request through our consultation form. Check back with us in March for regular access to these platforms using our intelligent sequencing search engine.   

HiSeqX_Ten_Image

 

 

Top Next Generation Sequencing Applications

A common question we’re asked is what library preparation applications are researchers most interested in. Providers starting their own core facility, bioinformaticians writing software for a particular pipeline and others trying to gauge demand for NGS applications are most interested in this answer. In the last three months we looked at the number of initiated projects on Genohub that included library preparation. Projects initiated on Genohub are made through our Shop by Project: https://genohub.com/shop-by-next-gen-sequencing-project/ or our Shop by Technology: https://genohub.com/shop-by-next-gen-sequencing-technology/ interfaces. Users enter project information like coverage or the number of required reads and can specify if they prefer one platform over another. Genohub’s intelligent project matching engine takes this data and displays packages that consist of provider services that match the user’s request. Users who select a package and begin direct communication with the provider are considered those who have initiated a project. A summary of the library preparation applications those users choose in the projects started between 10/2013 and 12/2013 are plotted in Figure 1 (data of projects using our complementary consultation service was also included in this graph).  

projects started

RNA-Seq projects encompass all those starting with Total RNA, ribosomal depleted and poly-A select RNA. These applications were the most popular followed by projects involving whole genome sequencing. RNA-Seq’s growing versatility as both an expression analysis and de novo assembly/construction tool are likely the reasons for the greatest number of projects on Genohub. Targeted DNA applications were also frequently performed as Exome, 16S V4 and other Amplicon-Seq projects consisted of the 3rd, 4th and 5th most commonly started projects on Genohub. While not illustrated in Figure 1, specialized applications related to Methyl-Seq and ChIP-Seq were some of the fastest growing.

Having recently started, we expect these numbers to grow significantly. We’ll keep the community updated with our latest data. If you’re a researcher or service provider that has a unique NGS application, we’d like to hear about it ! For inquiries or suggestions please contact us at support@genohub.com.

4 Approaches to HLA Type using Next Generation Sequencing

Human leucocyte antigen (HLA) genes are among the most polymorphic in the entire genome. They are located on the short arm of chromosome 6 within the major histocompatibility complex (MHC) and play an important role in organ or hematopoietic stem cell transplantation. Donor – recipient matching prior to transplantation is performed by examining 6 genes (A, B, C, DP, DQ, DR) that encode HLAs to reduce risk of transplant rejection or graft-versus-host-disease (GVHD).

 While the current “gold-standard” for HLA typing is Sanger Sequencing, defining the phase of sequence motifs is difficult and genotype ambiguity increases with each database release. Next generation sequencing (NGS) offers many advantages including: the ability to provide nucleotide-specific reads across the entire genome, clonal amplification provides phase information, and the ability to thoroughly evaluate larger genomic regions (introns). Unresolved technical issues however have limited the implementation of NGS in accredited HLA laboratories. These include significant library preparation and processing times and the more complex bioinformatics analysis needed to generate an easily readable HLA typing report.

 The main approaches to prepare DNA template for HLA typing on NGS platforms include:

  1. Multiplex PCR to amplify target regions, including exons or introns. Advantage: After PCR, fragmentation and ligation are no longer required as sequencing primers are designed as past of the initial targeting primers.  Disadvantage: Primer design is difficult due to multiple polymorphisms, necessitating primer pools.
  2. Long range PCR of individual loci followed by fragmentation and ligation of sequencing adapters. Advantage: Longer regions can be targeted. Disadvantage: Fragmentation and subsequent ligation of sequencing adapters can be difficult.
  3. Sequence capture using oligo based hybridization to target regions >20 Mb. Advantage: This technique is similar to exome capture and well characterized. Disadvantage: Hybrid capture of shorter HLA regions or the MHC is less effective than larger segments.
  4. Sequencing of the entire genome (whole genome sequencing). Advantage: This is the least biased way to examine HLA regions of interest. Disadvantage: Data analysis and the requirement to extract sequences of interest from the entire genome is difficult and not ready for routine studies.

Generating an unambiguous HLA genotype is important and software customized to each of these 4 approaches now exists. Several commercial companies, including bioinformatics providers on Genohub have software to accept data in FASTA or FASTQ and output accurate HLA genotype results.

 Whether you’re just beginning your HLA typing work and are interested in library prep, sequencing and an analysis solution or if you’ve already extracted your data and now are looking for the right analysis to generate an unambiguous report, Genohub offers complementary HLA consultation and can match you with the right service provider. Service providers on Genohub have experience using the four template preparation methods described above and have the pipelines in place for your analysis. To get started, fill out our NGS project consultation form and we’ll contact you with our recommendations. 

 

Bioinformatic Analysis: A New Option On the Genohub NGS Market

The ability to list and purchase bioinformatic analysis services along with next-gen sequencing comes to Genohub. This additional feature set will further simplify the NGS project experience by offering capabilities for the bioinformatics project step, all in one roof. By launching this service, researchers on Genohub are now able to shop from full-service sequencing providers who offer the three main services required in every NGS project with options for Illumina, Ion, SOLiD, PacBio, and Roche454 platforms:

  1. Library prep
  2. Next generation sequencing
  3. Bioinformatic analysis

The addition of this service alleviates the burden many researchers face of shopping for three separate sequencing related services from multiple providers and efficiently managing the entire process.

The benefits of this feature for researchers includes:

  • Researchers save time and money purchasing sequencing and bioinformatic services simultaneously
  • By enabling next gen sequencing providers to list bioinformatic services, it becomes easier and faster for researchers to compare and select a provider for their project
  • Risk is mitigated, as researchers are able to purchase bioinformatic services along with NGS services by providers that have gone through the Genohub vetting process

Providers also benefit:

  • Providers are now able to better highlight their unique services by listing specific bioinformatic services. These include basic primary analysis that may be included with every sequencing order, as well as more complex secondary and custom bioinformatics services that can be ordered as add-ons to NGS projects.
  • The bioinformatics platform enables providers to more succinctly communicate bioinformatic services to researchers, cutting down on back and forth communication prior to the researcher opting to move forward with the services listed by the provider

Providers may now list bioinformatic analysis services on the familiar “Manage Services Offerings” page:

New manage services page includes bioinformatics analysis services

New Manage Services Page

Researchers will be able to view these services once they select to view details about a sequencing package found when shopping by project or technology.

At Genohub we constantly strive to improve the service we offer to the NGS community through the development of new features and functionality. When we launched Genohub in August, 2013 our goal was to launch a service that was useful to researchers and sequencing providers, and continue to enhance and improve our service based directly on feedback from our clients.

The bioinformatic analysis listing feature come as a direct result of our development methodology. Researchers asked for a one-stop-shop for all of their sequencing needs, and sequencing providers asked for more ways to highlight and differentiate their services on Genohub. You asked, we listened!

Please visit Genohub often as we are constantly adding new useful features to improve the next-gen sequencing shopping experience including upcoming features to further enable providers to differentiate themselves and mitigate risk in decision making for researchers. If you have any feedback on additional features you would like to see, please send us feedback by shooting us an email at info@genohub.com.

Library Preparation Guide

One of the most important steps in the sequencing process is library construction. With the rapid expansion of Next Generation Sequencing into a growing number of labs, the number of techniques to create libraries has grown. Heard or Gro-Seq, HITS-CLIP or GBS? These are just a few examples of established techniques that took on a sequencing twist (genomic run-on, cross-linking immunoprecipitation and genotyping respectively). You could say that the growing throughput of sequencing has enabled these methods and that these methods are enabling the growth of sequencing into more labs. Our aim is to keep track of these techniques, offer brief descriptions of each, along with comparison metrics. We’ve started by writing the Guide to Library Preparation, describing the techniques and kits used by our service providers on Genohub. When searching for library preparation services on Genohub, researchers will be able to see the type of kit a provider uses and click on its name for a more detailed description of the technology behind the construction of libraries.

As of today, there are a little more than 200 different techniques to construct libraries. Our guide is certainly a work in progress. If you’ve recently developed a new technique and would like it described in our guide, please contact us with a description of the library protocol. We’re also looking for feedback on the guide’s content and what you think we should add.